Engineering Corynebacterium glutamicum for violacein hyper production
نویسندگان
چکیده
BACKGROUND Corynebacterium glutamicum was used as a metabolic engineering chassis for production of crude violacein (mixture of violacein and deoxyviolacein) due to Corynebacterium's GRAS status and advantages in tryptophan fermentation. The violacein is a commercially potential compound with various applications derived from L-tryptophan. RESULTS Corynebacterium glutamicum ATCC 21850 that could produce 162.98 mg L(-1) tryptophan was employed as a novel host for metabolic engineering chassis. Heterologous vio operon from Chromobacterium violaceum was over-expressed in ATCC 21850 strain with constitutive promoter to have obtained 532 mg L(-1) violacein. Considering toxicity of violacein, vio operon was expressed with inducible promoter and 629 mg L(-1) violacein was obtained in batch culture. Due to the economical coding nature of vio operon, the compressed RBS of vio genes were replaced with complete strong C. glutamicum ones. And extended expression units were assembled to form a synthetic operon. With this strategy, 1116 mg L(-1) violacein in batch culture was achieved. Fermentation process was then optimized by studying induction time, induction concentration, culture composition and fermentation temperature. as a result, a titer of 5436 mg L(-1) and a productivity of 47 mg L(-1) h(-1) were achieved in 3 L bioreactor. CONCLUSIONS With metabolic engineering and fermentation optimization practice, C. glutamicum 21850 (pEC-C-vio1) was able to produce violacein with both titer and productivity at the highest level ever reported. Due to advantages of mature C. glutamicum fermentation industry, this work has built basis for commercial production of violacein.
منابع مشابه
Development of biotin prototrophic and hyper - auxotrophic 2 Corynebacterium glutamicum strains toward biotin production
1 Development of biotin prototrophic and hyper-auxotrophic 2 Corynebacterium glutamicum strains toward biotin production 3 4 Running title: Engineering of C. glutamicum biotin auxotrophy 5 6 Masato Ikeda,* Aya Miyamoto, Sumire Mutoh, Yuko Kitano, a Mei Tajima, a Daisuke 7 Shirakura, Manami Takasaki, Satoshi Mitsuhashi, and Seiki Takeno 8 9 Department of Bioscience and Biotechnology, Faculty of ...
متن کاملFermentative Production of Lysine by Corynebacterium glutamicum from Different Carbon Sources
Production of lysine by Corynebacterium glutamicum (PTCC 1532) from different agricultural by-products (molasses and pulpy waste date) was compared to glucose as raw materials. For this purpose, ammonium sulphate was selected as a constant nitrogen source. The effect of different nitrogen sources was also investigated with glucose as a constant carbon source. The production of L-lysine was exam...
متن کاملDevelopment of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum
Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...
متن کاملAnalysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum.
The Gram-positive soil bacterium Corynebacterium glutamicum was discovered as a natural overproducer of glutamate about 50 years ago. Linked to the steadily increasing economical importance of this microorganism for production of glutamate and other amino acids, the quest for efficient production strains has been an intense area of research during the past few decades. Efficient production stra...
متن کاملMetabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products
Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative c...
متن کامل